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Waves in a gas in solid-body rotation 
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The axial and transverse wave motions of an inviscid perfect gas in isothermal 
solid-body rotation in a cylinder are investigated. Solutions of the resulting 
eigenvalue problem are shown to correspond to two types of waves. The acoustic 
waves are the rotational counterparts of the well-known Rayleigh solutions for 
a gas at  rest in a cylinder. The rotational waves, whose amplitudes and frequencies 
go to  zero in the non-rotating limit, exhibit phase speeds both larger and smaller 
than the speed of sound. The effect of rotation on the frequency and structure of 
these waves is discussed. 

1. Introduction 
Wave motions in incompressible rotating fluids have been extensively studied 

(Greenspan 1968; Lamb 1932) because of their application to problems of geo- 
physical origin. To date, however, there have been relatively few investigations 
of waves in rotating fluids in which compressibility has been considered. The 
purpose of this paper is to consider waves in a flow of practical importance: 
isothermal solid-body rotation in a cylinder. 

Many investigations of wave motions in gases have explored the effect of con- 
tainer shape (Lamb 1932; Rayleigh 1896). In  particular, Rayleigh’s (1896, p. 300) 
study of the waves in a uniform gas in a cylinder discussed the zero-rotation solu- 
tion for the present problem. In  the same way, Maslen & Moore’s (1956) viscous 
analysis of the transverse waves in a gas a t  rest in a cylinder formulated the basis 
for a viscous treatment of the rotating problem. 

A more recent effort by Fraenkel(l959) discussed the propagation of a cylin- 
drical sound pulse into an infinite mass of gas initially in isothermal solid-body 
rotation and noted the oscillatory influence of the Coriolis force. Salant (1968) 
considered the symmetric standing waves in an isothermal gas in a rotating 
cylinder while Sozou (19694 discussed the same waves for a gas in isentropic 
solid-body rotation. Later Sozou (1969~) investigated the transverse wave 
motions for the same initial state and found acoustic solutions.Jy Finally, Sozou 
& Swithen bank (1969) examined the transverse wave motions in a Rankine 
vortex. This time, in addition to acoustic waves, they found slow waves.$ 

In the present paper the axial and transverse wave motions of an inviscid per- 
fect gas in isothermal solid-body rotation are investigated for a range of rotation 

t These reduce to the Rayleigh solutions in the zero-rotation limit. 
1 Their terminology. 
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rates and wavenumbers. Two types of waves are discussed: acoustic waves, 
which are the rotational extension of the Rayleigh solutions, and rotational waves, 
whose amplitude and frequency go to zero in the non-rotating limit. Spiralling 
waves, which have both axial and transverse components, are not considered 
here but can be handled in the same manner. 

2.1. The steady-state motion 2. Theory 

Let (r, 19, z )  be cylindrical polar co-ordinates fixed in space and ( U ,  V ,  W )  the 
corresponding components of velocity. The z axis lies along the axis of symmetry 
of the infinitely long right circular cylinder containing the gas. Since the velocity 
components of a gas in solid-body rotation about the z axis at angular velocity Q 
are given by U = 0, V = rQ, W = 0, 

the pressure distribution is governed by the hydrostatic equation 
(2.1) 

di;/dr = j3rQ2, (2.2) 

where i; is the pressure and j3 the density. 

cylinder is 

where r, is the radius of the cylinder, y the ratio of specific heats, co = (yRT)t 
the sound speed, A = r,, Q/co the peripheral Mach number and $,!the pressure at  
the cylinder wall. 

For a perfect gas at uniform temperature T the pressure distribution in the 

3 = 3 0  exp { - ByA2 - (./.,)”I), (2.3) 

2.2. Disturbance equation 

Let (u’, w‘, w’) be smallt perturbations of the steady-state velocity components 
( U ,  V, W) with p‘ and p’ the corresponding perturbations of the steady-state 
pressure i; and density p̂ . Neglecting viscous and thermal conduction effects on 
the wave motions, and dropping all second-order perturbation terms, the con- 
tinuity, momentum and energy equations become 

(2.4) 

By assuming periodic disturbances of the form 

(u’, v’, w’,p’,p’) = (u*(r) ,  w*(r), w*(r) ,p*(r) ,p*(r))  exp [i(nO+kz- d ) ] ,  (2.9) 

-f Small compared with r, f2. 
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where n is an integer, and non-dimensionalizing according to 
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equations (2.4)-(2.8) can be reduced with the substitution q = xu to the single 
equation 

3-19 [l -yAa,Z+ 2n2A2 4nA(h2 - a2) 
ax2 xdx: (A2 - a2) x2 - n2 

(4 - 2 7 )  A% A 4 ( y  - 1)  n2 4(h2 - a2) A2] = o. 
- - ( ~ ~ 2 x 2  + n2) - (A2 - a2) + - + h2 

h A2 X 2  

(2.11) 

Since the radial mass flow must be zero at the axis and at the cylinder wall, 
the boundary conditions for (2.11) are q(0)  = q ( l )  = 0. The original system is 
thus reduced to an eigenvalue problem for a second-order ordinary differential 
equation. Given a pair of wavenumbers (n, a) ,  each of the infinite number of 
eigenfunction-eigenvalue pairs (q, A )  corresponds to a possible wave mode for 
that wavenumber pair. The wave frequency is related to the eigenvalue h 
through relation (2.10). Similarly the eigenfunction q is related to the following 
physical quantities of interest: 

ia 2Anq 
2u = - ( A2x2q - 

(A2 - a2) x2 - n2 

(2.12) 

(2.13) 

There are two singularities in (2.1 I). The 2-1 term reflects the requirement of 
conservation of mass in the cylindrical geometry while the singularity a t  
x = nl(h2 - a2)t corresponds to the point in the flow where the phase speed of the 
wave in the direction of propagation equals the undisturbed sound speed. 

2.3. Numerical computation 

The numerical method used in this paper is based on a shooting method of finding 
eigenvalues. A power-series solution near the origin, extended by a combined 
Runge-Kutta and Adams-Moulton method, was used to integrate (2.11) after 
an initial guess for the eigenvalue. Then a simple root-finder technique was used 
to find the eigenvalue to an accuracy of a t  least four significant digits. The 
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singularity at  x = nl(h2- a2)6 caused no difficulty as long as its location did not 
coincide with any mesh point used in the integration. All calculations in this paper 
are for y = 1.4. 

2.4. Non-rotating solutions 

Rayleigh (1896, p. 300) solved (2.1) for the non-rotating ( A  = 0 )  case in terms of 
the derivatives of Bessel functions of order n. The eigenfunction-eigenvalue 
pair is 

p(x) = aoxJ;[(h2-a2)ax], A2 = CI2+ (j&)2, (2.16) 

where J; is the derivative of the Bessel function of order n andjg,n is the mth 
zero of this function. When n = 0, the eigenvalue h = CI is also allowable. Ex- 
tensive tables of these functions appear in Abramowitz & Stegun (1968, p. 41 I ) .  

3. Axial waves 
When n = 0 the solutions of (2.11) describe axisymmetric wave motions which 

propagate parallel to the cylinder axis. These axial waves are characterized by 
the phase speed 

& =  a / k .  (3.1) 

In the non-rotating case, the Rayleigh solution for the frequency yields the 

(3.2) 

phase speed distribution 
q / c ;  = 1 + (j;,,)2/a2, 

hence these disturbances all travel faster than the undisturbed sound speed. 
When h = a, & = co so the wave is a plane sound wave. In  the rotating case, h = CL 

corresponds to a sound wave with a radial pressure distribution 

p N exp [r2Q2/$]. 

For axial waves in the rotating gas, the disturbance equation is 

subject to the same boundary conditions as before. 
Solutions to (3.3) can be given in terms of the confluent hypergeometric func- 

tion ,2i;,-f. with frequencies determined by the zeros of this function. Unfortunately 
these zeros are not well tabulated, necessitating numerical methods in general. 
However, an approximate method based on the transformation 

q(x) =f(x)xexp [tyA2x2] (3.4) 

has proved useful for determining frequencies. For small rotation rates ( A  < 1) 
the transformed equation may be simplified to Bessel’s equation. The resulting 
frequency relation is 

16a2A2 
h2 = [ ( j , , , )2+~2+4A2]  -+- 1-  { - ( [ ( j , , ~ ) ~  + a2 + 4A2]2 

t The notation follows Slater (1960). 
$ jm, is the mth zero of the Bessel function of order 1. 
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FIGUEE 1. Axial wave frequencies (n  = 0, a = 5 )  for acoustic waves: three modes. 
--, approximate result [equation (3.5)]. 

The class of axial solutions contains two distinct types of waves depending on 
the sign of the term in curly brackets in (3.5). It is easily verified that acoustic 
wave frequencies, corresponding to the positive sign, reduce to  the Rayleigh 
frequencies as A 3 0. On the other hand, the frequencies (and amplitudes) 
of rotational waves, corresponding to the negative sign, tend to zero in the same 
limit. This conclusion is confirmed by the numerical results. 

3. I. Acoustic waves 

The effect of rotation rate on the frequencies of the first three modes of a typical 
acoustic wave is shown in figure 1.  The results of the approximate relation (3.5) 
are also included, and it can be seen that the agreement is quite good a t  moderate 
rotation rates. For all wavenumbers the frequency of a wave increases with 
increasing rotation rate, with the lowest modes (smallest frequencies) being 
proportionately more affected. The slope of the frequency us. rotation rate curve 
at  a given rotation rate decreases with increasing wavenumber. Higher frequency 
acoustic waves are influenced less by the rotation than lower frequency waves. 

The normalized radial pressure distribution in an acoustic wave is shown in 
figure 2 (a)  as a function of distance from the axis in units of radii. The rotation 
rate is A = 3. In  figure 2 (b )  the pressure distribution in the first mode of the same 
wave is shown for different rotation rates. The different appearance of the A = 3 
wave is due to normalization a t  x = 1 rather than at x = 0. 

3.2. Rotational waves 

In contrast to acoustic waves, the mode frequencies of rotational waves are 
restricted to a finite band located between the mode I frequency and zero. This 
can be seen in figure 3, which gives the frequencies of a typical rotational wave. 
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FIGURE 2. Axial wave pressure distribution (n = 0, a = 5) for acoustic waves. 
(a )  A = 3, three modes. ( b )  First mode, A = 0, 1 and 3. 
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FIGURE 3. Axial wave frequencies (n = 0, 01 = 5) for rotational waves: three modes. 
--, approximate result [equation (3.5)]. 

Since a = 5 in this case, the line h = 5 gives the frequency of a sound wave, and 
it appears that regardless of the value of the rotation rate rotational waves 
propagate at speeds less than the speed of sound. The values determined by the 
approximate result (3.5) are again seen to be in good agreement with the numeri- 
cal results. 

The pressure distribution in a rotational wave is remarkably similar to that 
of an acoustic wave as seen earlier in figure 2 (b) .  The same is true for the change in 
pressure distribution with rotation rate. 
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4. Transverse waves 
When 01 = 0 the solutions of (2.11) describe motions which occur in planes 

normal to the cylinder axis. These transverse waves are characterized by the 
phase angular velocity a/n and peripheral phase speed 

V, = ar,/n. (4-1) 

Since an observer fixed in the rotating cylinder sees a peripheral phase speed 
r,(a/n - a), the quantity 

is the negative of the non-dimensional phase speed seen by this observer. 
In  the non-rotating case, Rayleigh‘s solution for the frequency 

= kjh,fi (4.2) 

indicates there are two identical waves, one travelling in each direction around 
the cylinder. In  the rotating case, the situation is more complex. For a given 
wavenumber and mode number, there are two waves of each type (acoustic and 
rotational), which travel in opposite directions around the cylinder. In  general, 
the frequency and wave structure of the pair differ. 

The equation governing transverse waves is 

2n2 2n2A2 4nAA + (4 - 2y) A3n 
dx2 x d x  h 

A4(y - 1) n2 + (h2x2 - n2) - 4 ~ 2 ] =  0. 
(4.3) 

+ A2 X 2  

Because the equation is unaffected by the substitution ( - A ,  A )  -+ (A, - A )  it  
proves convenient to  determine negative frequencies as the positive ones which 
correspond to a negative rotation rate A .  Thus, in the figures, h values on the 
left halves correspond to negative frequencies and therefore to waves which travel 
in the direction of fluid rotation relative to the cylinder. 

For small rotation rates, the following analysis provides a useful method of 
determining the rotational wave frequencies. Writing q and A as power series in 

(4.4) 

A ,  

i ! I (~ ,A ,A)  = A%(z,jm,n)+A291(x,j,,n) + - a * ,  

A =  n(y-  . l)”2{1 +s,A +e2A2+ ...>, 

2 - y  c 2 =  

9m, n 

and substituting into (4.3) yields after some analysis 

6-57 y2-2y-2 

€ -  - j m , n ( y - l ) ’ ’  Zj&,Jy-- l ) ’  e3 = j 3  m, a (y-I)P) 
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A Series Numerical 

0.5 0.0072283 0.0072283 
1 0.034084 0.034090 
2 0.171967 0.17343 
3 0.392683 0.43108 

TABLE 1. Frequencies for n = 1, third mode, transverse wave 
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FIGURE 4. Transverse wave frequencies (n  = 1, a = 0 )  for acoustic waves: three modes. 

Table 1 contains a comparison between the values of h obtained by this method 
and the numerical values for a typical rotational wave. In  general, the larger 
j,,,, the faster the series converges provided that A is not too large. 

A similar perturbation analysis of the equations derived by Sozou (1969 b)  
for the case of isentropic solid-body rotation fails to yield solutions of the rota- 
tional type. 

4.1. Acoustic waves 

The effect of rotation rate on the frequencies of the first three modes of a typical 
acoustic wave is shown in figure 4. Apart from that of the first mode wave travel- 
ling in the direction of fluid rotation, all mode frequencies increase with increasing 
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FIGURE 5 .  Transverse wave pressure distribution (n = 1, a = 0) for acoustic waves. 
( a )  A = 3, three modes. ( b )  First mode, A = 0, f 1, and 3. 
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FIGURE 6. Transverse wave frequencies (n = 1, CL = 0) for rotational waves: three modes. 
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rotation rate. The frequency of the first mode travelling in the direction of the 
rotation tends towards the value h = n with increasing rotation rate. This cor- 
responds to a peripheral phase speed relative to the cylinder equal to the 
undisturbed sound speed. All first-mode acoustic waves exhibit this behaviour. 

The normalized radial pressure distribution in an acoustic wave is shown in 
figure 5(a )  for three modes. In  figure 5(b)  the pressure distribution in the first 
mode of the same wave is shown for different rotation rates. Recall that negative 
A values correspond to waves travelling in the direction of fluid rotation. 

4.2. Rotational waves 

Like axial waves, transverse rotational waves have their frequencies restricted 
to a band between the mode 1 frequency curve and zero. This can be seen in figure 
6, which gives the frequencies of a typical rotational wave. Unlike axial rotational 
waves, however, these waves may propagate with peripheral phase speeds which 
are faster than the speed of sound. In  figure 6, frequencies above the line h = 1-0 
correspond t o  just such waves. 

The pressure distributions in rotational waves are again very similar to those 
of acoustics waves shown in figures 5(a )  and (b ) .  
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